

2016.9.9

はらだ けんいち

【PICAXE編】(08M2)

温度センサー 【超】入門

センサーを利用した環境測定の方法を学ぶ

◇温度を測る → 分圧した電圧を測るのと同じ → センサーが使えるようになる

とても有益な超基本です。

※必須講座 No.205電圧測定

精度が載っている	
主な仕様	
■ 精度@ 25 ℃	±2.0℃、±3.0℃(最大)
■ C グレード精度(-30 ℃~~	+100℃) ±4.0℃(最大)
■ B グレード精度(-25°C~-	+85℃) ±3.0℃(最大)
■ 検出感度	$+10 \text{mV}/\degree\text{C}$
■ 動作規定温度範囲	$+2.7V \sim +10V$
■ 待機時消費電流@ 25 ℃	125 µA(最大)
■ 非線形性	±0.8℃(最大)
■ 出力インピーダンス	800Ω(最大)

FIGURE 1. Full-Range Centigrade Temperature Sensor (- 30 °C~+ 100 °C) Operating from a Single Li-Ion Battery Cell

センサーの温度特性グラフ

◇ センサー特性をもとにA/D変換の計画を立てます。

o~5000 mV → 10bit = 0x3FF = 1023(10) 分解能:5000÷1023 = 4.9 mV

AD値から温度を求めるには ☆1 ☆2 (AD値×分解能 - 600mV)÷10 = 温度(℃) ☆ 1 4.9mV ☆2 0 ℃のときの出力電圧 しかし、PICAXEは整数計算しかできないので、 10倍して少数第一位が整数となるようにする。 AD値×分解能 – 600mV = 10倍の温度(℃) さらに、分解能も考慮して、さらに10倍して・・・ AD値 × 4 9 - 6 0 0 0 mV = 1 0 0 倍の温度 ($^{\circ}$ C) · · · (A) (A) を100で割り算して、温度(°C)の整数部を求める。 剰余をさらに10で割り算して、少数第一位の温度を求める。

※ PICAXEの演算は、常に16bitで行われるので、計算途中もオーバーフローしないように することが求められます。

ピン配置で配線が分かる

+Vs:5V	
Vout : 出力	
gnd: 0v	

電圧を分ける → 分圧

ー番小さな PICAXE 08M2 を使う

No.1:電源(3.3~5V) No.8:GND No.2:TxD No.7:RxD No.3:Vout

PICAXE-08M2

※電源は、USB-シリアルI/Fの5Vを利用

プログラムライター回路

有限会社ワイズマン

※CPUの向き、抵抗の種類に注意して下さい。

温度測定回路

PICAXE Editor 6

PICAXE Typeの設定

PICAXE Editor プログラミング

PICAXE変数の確認

COMポート番号確認

マイコンへの書込み 成功!!

1. ウインドウ上部のPICAXEタブを選択します。

2. 【Terminal】をクリックします。

Analogue Data Logging機能

◇PICAXEタブ → Analogue → Start Logging ◇AD値の変化が グラフに表示される。

◇注意:この機能を 利用した後は、再度 プログラムを書き込んで ください。

マニュアル等

PICAXE Manuals

Yes, we know, most people rarely read a manual before trying to use a new system! So if you just can't wait and want to get an LED flashing straight away, click here for our online jumpstart tutorial.

However a lot of time and effort has gone into the PICAXE manuals, so we do strongly recommend you have a browse through the manual, particularly the tutorials in section 1.

The PICAXE manual is divided into four separate downloads:

- Section 1 Getting Started
- Section 2 BASIC Commands
 - Section 3 Microcontroller interfacing circuits
 - Section 4 Using Flowcharts
- Section 5 Blockly for PICAXE.

◇Section2 のマニュアルが大変役立ちます。

◇PICAXEチップと専用USB-シリアルI/F ◇液晶表示器、温度センサーなど

◇PICAXEチップと専用USB-シリアルI/F ◇液晶表示器、温度センサーなど

2016.9.9

はらだ けんいち